A second order scheme for solving optimization-constrained differential equations with discontinuities
نویسندگان
چکیده
A numerical method for the resolution of a system of ordinary differential equations coupled with a mixed constrained minimization problem is presented. This coupling induces discontinuities of some time-dependent variables when inequality constraints are activated or deactivated. The ordinary differential equations are discretized in time and combined with the first order optimality conditions of the optimization problem. We use a second order multistep method based on a predictorcorrector Adams scheme to detect the discontinuities by extrapolation of the trajectories. Optimization features, namely a sensitivity analysis, are exploited to compute the derivatives of the optimization variables and track the discontinuity points. The main difficulty consists in the impossibility of defining an explicit event function to characterize the activation or deactivation of a constraint. The order of convergence of our method is proved when inequality constraints are activated and numerical results for atmospheric organic particles are presented.
منابع مشابه
The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملGeneralized H-differentiability for solving second order linear fuzzy differential equations
In this paper, a new approach for solving the second order fuzzy differential equations (FDE) with fuzzy initial value, under strongly generalized H-differentiability is presented. Solving first order fuzzy differential equations by extending 1-cut solution of the original problem and solving fuzzy integro-differential equations has been investigated by some authors (see for example cite{darabi...
متن کاملSecond order sensitivity analysis for shape optimization of continuum structures
This study focuses on the optimization of the plane structure. Sequential quadratic programming (SQP) will be utilized, which is one of the most efficient methods for solving nonlinearly constrained optimization problems. A new formulation for the second order sensitivity analysis of the two-dimensional finite element will be developed. All the second order required derivatives will be calculat...
متن کاملA New Approach for Solving Heat and Mass Transfer Equations of Viscoelastic Nanofluids using Artificial Optimization Method
The behavior of many types of fluids can be simulated using differential equations. There are many approaches to solve differential equations, including analytical and numerical methods. However, solving an ill-posed high-order differential equation is still a major challenge. Generally, the governing differential equations of a viscoelastic nanofluid are ill-posed; hence, their solution is a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008